Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo de estudio
Tipo del documento
Intervalo de año
1.
China CDC Wkly ; 5(18): 397-401, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: covidwho-2312954

RESUMEN

What is already known about this topic?: The first nationwide wave of coronavirus disease 2019 (COVID-19), driven by the Omicron variant, has largely subsided. However, subsequent epidemic waves are inevitable due to waning immunity and the ongoing evolution of the severe acute respiratory syndrome coronavirus 2. What is added by this report?: Insights gleaned from other nations offer guidance regarding the timing and scale of potential subsequent waves of COVID-19 in China. What are the implications for public health practice?: Understanding the timing and magnitude of subsequent waves of COVID-19 in China is crucial for forecasting and mitigating the spread of the infection.

2.
Build Environ ; 221: 109328, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1906830

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has become the dominant lineage worldwide. Experimental studies have shown that SARS-CoV-2 Omicron variant is more stable on various environmental surfaces than the ancestral strains of SARS-CoV-2. However, the influences on the role of the contact route in SARS-CoV-2 transmission are still unknown. In this study, we built a Markov chain model to simulate the transmission of the Omicron and ancestral strains of SARS-CoV-2 within a household over a 1-day period from multiple pathways; that is, airborne, droplet, and contact routes. We assumed that there were two adults and one child in the household, and that one of the adults was infected with SARS-CoV-2. We assumed two scenarios. (1) Asymptomatic/presymptomatic infection, and (2) symptomatic infection. During asymptomatic/presymptomatic infection, the contact route contributing the most (37%-45%), followed by the airborne (34%-38%) and droplet routes (21%-28%). During symptomatic infection, the droplet route was the dominant pathway (48%-71%), followed by the contact route (25%-42%), with the airborne route playing a negligible role (<10%). Compared to the ancestral strain, although the contribution of the contact route increased in Omicron variant transmission, the increase was slight, from 25%-41% to 30%-45%. With the growing concern about the increase in the proportion of asymptomatic/presymptomatic infection in Omicron strain transmissions, the airborne route, rather than the fomite route, should be of focus. Our findings suggest the importance of ventilation in the SARS-CoV-2 Omicron variant prevention in building environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA